Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Energy dissipation around a propagating crack is the primary mechanism for the enhanced fracture toughness in viscoelastic solids. Such dissipation is spatially non-uniform and is highly coupled to the crack propagation process due to the history-dependent nature of viscoelasticity. We present an experimental approach to map the dissipation field during crack propagation in soft viscoelastic solid. Specifically, we track randomly distributed tracer particles to measure the evolving deformation field. The measured deformation field is then put into a nonlinear constitutive model to determine the dissipation field. Our methodology was used to investigate the deformation and dissipation fields around a propagating crack in a Polyampholyte (PA) hydrogel. The deformation field measurements allowed us to assess whether the commonly assumed translational invariance in viscoelastic fracture theories holds true in practical experiments. Furthermore, by combining the obtained deformation fields with a nonlinear viscoelastic model, we captured the complete history of the dissipation field during crack propagation. We found that dissipation occurred even at material points that are a few millimeters away from the crack tip. The mapped dissipation field also enabled the separate determination of the intrinsic and dissipative components of fracture toughness for the viscoelastic hydrogel.more » « less
-
null (Ed.)A mechanochemistry based approach is proposed to detect and map stress history during dynamic processes. Spiropyran (SP), a force sensitive molecular probe, was incorporated as a crosslinker into multiple network elastomers (MNE). When these mechanochromic MNEs are loaded, SP undergoes a well-known force-activated reaction to merocyanine (MC) changing its absorption in the visible range (visible blue color). This SP to MC transition is not reversible within the time frame of the experiment and the color change reports the concentration of activated molecules. During subsequent loading–unloading cycles the MC undergoes a fast and reversible isomerization resulting in a slight shift of absorption spectrum and results in a second color change (blue to purple color corresponding to the loading–unloading cycles). Quantification of the color changes by using chromaticity shows that the exact color observed upon unloading is characteristic not only of the current stress (reported by the shift in color due to MC isomerization), but of the maximum stress that the material has seen during the loading cycle (reported by the shift in color due to the change in MC concentration). We show that these two color changes can be separated unambiguously and we use them to map the stress history in the loading and unloading process occurring as a crack opens up and propagates, breaking the material. Color maps on fractured samples are compared with finite element simulations and the agreement is excellent.more » « less
An official website of the United States government

Full Text Available